2.0 NUMERICAL PROCESSES (2) THEORY OF LOGARITHMS \& INDICES

OBJECTIVES

1. Express statements given in index form (such as $81=3^{\wedge} 4$) as an equivalent logrithms statement $(\log 381=4)$.
2. Evaluate expression given in logarithms form.
3. Note the equivalence between the laws of indices and the law of logarithms
4. Recall and use the law of logarithms to simplify and/or evaluate given expression without the use of logarithm table.
"Visit www.spyloadedng.com/quiz to view images"
5. Use logarithms table for the purpose of calculation.

2.1 LAW OF LOGARITHMS \& INDICES

The three fundamental law of indices can be stated in their equivalent logarithms form;

1. In indices: $Y^{\wedge} a \times Y^{\wedge} b=Y^{\wedge} a+b$ (Note ^ means Raise to power)

* In Logarithms: Log(MN) = Log M + Log N

2. In indices: $Y^{\wedge} a \div Y^{\wedge} b=Y^{\wedge} a-b$ (Note ^ means Raise to power)

* In Logarithms: Log(M/N) = Log M - Log N

3. In indices: $\left(\mathrm{X}^{\wedge} \mathrm{a}\right)^{\wedge} \mathrm{b}=\mathrm{X}^{\wedge} \mathrm{ab}$ (Note ${ }^{\wedge}$ means Raise to power)

* In Logarithms: $\log \left(\mathrm{M}^{\wedge} \mathrm{p}\right)=\mathrm{p} \log \mathrm{M}$

Theory Of Logarithms And Indices

Example 1: Simplify Log $8+\log 5$
solution;

$$
\begin{gathered}
\log 8+\log 5=\log (8 \times 5) \\
\text { Ans }=\log 40
\end{gathered}
$$

Example 2: Simplify Log $9 \div$ Log 3 solution;
$\log 9 \div \log 3=\log 9 / \log 3$

```
= Log 3^2 / Log 3^1 (Note / means All over)
= 2 Log 3 / 1 Log 3 (Log 3 will cancel Log 3)
    = Log 2/1
    Ans=Log 2
```

Example 3: Given that $\log 2=0.30103 ;$ Calculate Log 5 without using table solution;
$\log 5=\log 10 / 2$
$=\log 10-\log 2($ Note: Log $10=1)$
$=1-0.30103$
Ans $=0.69897$

Example 4: Evaluate Log base3(6.84) to 2 d.p

Theory Of Logarithms And Indices 2

```
solution;
    Log3 (6.84)
    = Let Log3 (6.84) = x
    then }\mp@subsup{3}{}{\wedge}x=6.8
    = log(3^x) = log(6.84)
    x = log(6.84) / log(3)
    x = 0.8351 / 0.4771
    Ans=1.75
```


2.2 CALCULATIONS USING LOGARITHM TABLE

Example 1: Evaluate $82.47 \times 24.85 / 209.3$
solution;
Draw a table form with "No \& Log"

No $82.47=\log 1.9163$ (No means Number)
No $24.85=\log 1.3954$
Add together $=3.3117$

No $209.3=\log -2.2307$ (from log table)
Deduct -2.2307 from 3.3117
= 3.3117-2.2307
Ans $=0.9910$
2.3 LAW OF INDICES

The following laws of indices are true for all non-zero value a, b and x

1. $\mathrm{X}^{\wedge} \mathrm{a} \times \mathrm{X}^{\wedge} \mathrm{b}=\mathrm{X}^{\wedge} \mathrm{a}+\mathrm{b}$ (Note ${ }^{\wedge}$ means Raise to power)
2. $\mathrm{X}^{\wedge} \mathrm{a} \div \mathrm{X}^{\wedge} \mathrm{b}=\mathrm{X}^{\wedge} \mathrm{a}-\mathrm{b}$ (Note ${ }^{\wedge}$ means Raise to power)
3. $\mathrm{X}^{\wedge} 0=1$
4. $\mathrm{X}^{\wedge}-1=1 / \mathrm{X}^{\wedge} \mathrm{a}$ (Note / means All over)
5. $\left(X^{\wedge} a\right)^{\wedge} b=X^{\wedge} a b$
6. $\mathrm{X}^{\wedge} 1 / \mathrm{a}=\mathrm{a} \mathrm{V} \mathrm{x}$ (Note $\sqrt{ }$ means Square root)
7. $X^{\wedge} a / b=b \sqrt{ } x^{\wedge} a$ or $(b \sqrt{ })^{\wedge} a$

Theory Of Logarithms And Indices 3

2.3.1 WORKED EXAMPLES

Example 1: Simplify 25^1/2
solution;

$$
\begin{aligned}
& 25^{\wedge} 1 / 2=\sqrt{ } 25 \\
& \text { Ans }=5
\end{aligned}
$$

Example 2: $4^{\wedge} 3 \div 4^{\wedge} 5$
solution;

$$
\begin{aligned}
& 4^{\wedge} 3 \div 4^{\wedge} 5=4^{\wedge} 3-5 \\
& =4^{\wedge} 2 \\
& =1 / 4^{\wedge} 2 \\
& \text { Ans }=1 / 16
\end{aligned}
$$

Theory Of Logarithms And Indices 4

REVISION EXERCISE

[1] Simplify $3^{\wedge} 8 \times 3^{\wedge} 3$
[2] Simplify $5^{\wedge} 3 \times 5^{\wedge}-1$
[3] Express Log $3+\log 4$
[4] Evaluate 3Log2 + Log20-Log1.6
[5] Simplify Log 8 - Log 4
[6] Simplify $\log 8 \div \log 4$
[7] Simplify Log 4 / Log 2
[8] Simplify ($27 / 48)^{\wedge} 3 / 2$
[9] Simplify $3^{\wedge} 6 \div 3^{\wedge} 2$
[10] Simplify $(4 / 25)^{\wedge}-1 / 2 \times\left(2^{\wedge} 4\right) \div(15 / 2)^{\wedge}-2$

Visit www.spyloadedng.com/cbt/ to do Quiz

